000 01822nam a22002417a 4500
003 IN-KoAU
005 20251127171655.0
008 251127b ii ||||| |||| 00| 0 eng d
020 _a9781107512825
040 _beng
041 _aEnglish
082 _a006.31/SHA/U
100 _aShalev-Shwartz, Shai
_923470
245 _aUnderstanding Machine Learning
_bfrom theory to algorithms
_cShai Shalev-Shwartz and, Shai Ben-David
260 _aLondon
_bCambridge
_c2019
300 _axvi, 397 p.
505 _aMachine generated contents note: 1. Introduction; Part I. Foundations: 2. A gentle start; 3. A formal learning model; 4. Learning via uniform convergence; 5. The bias-complexity tradeoff; 6. The VC-dimension; 7. Non-uniform learnability; 8. The runtime of learning; Part II. From Theory to Algorithms: 9. Linear predictors; 10. Boosting; 11. Model selection and validation; 12. Convex learning problems; 13. Regularization and stability; 14. Stochastic gradient descent; 15. Support vector machines; 16. Kernel methods; 17. Multiclass, ranking, and complex prediction problems; 18. Decision trees; 19. Nearest neighbor; 20. Neural networks; Part III. Additional Learning Models: 21. Online learning; 22. Clustering; 23. Dimensionality reduction; 24. Generative models; 25. Feature selection and generation; Part IV. Advanced Theory: 26. Rademacher complexities; 27. Covering numbers; 28. Proof of the fundamental theorem of learning theory; 29. Multiclass learnability; 30. Compression bounds; 31. PAC-Bayes; Appendix A. Technical lemmas; Appendix B. Measure concentration; Appendix C. Linear algebra.
650 _aMachine learning.
_920567
650 _aAlgorithms.
_923100
650 _aCOMPUTERS / Computer Vision & Pattern Recognition.
_923471
700 _aBen-David, Shai
_923472
942 _cBOOKS ECE
999 _c31736
_d31736