| 000 | 01822nam a22002417a 4500 | ||
|---|---|---|---|
| 003 | IN-KoAU | ||
| 005 | 20251127171655.0 | ||
| 008 | 251127b ii ||||| |||| 00| 0 eng d | ||
| 020 | _a9781107512825 | ||
| 040 | _beng | ||
| 041 | _aEnglish | ||
| 082 | _a006.31/SHA/U | ||
| 100 |
_aShalev-Shwartz, Shai _923470 |
||
| 245 |
_aUnderstanding Machine Learning _bfrom theory to algorithms _cShai Shalev-Shwartz and, Shai Ben-David |
||
| 260 |
_aLondon _bCambridge _c2019 |
||
| 300 | _axvi, 397 p. | ||
| 505 | _aMachine generated contents note: 1. Introduction; Part I. Foundations: 2. A gentle start; 3. A formal learning model; 4. Learning via uniform convergence; 5. The bias-complexity tradeoff; 6. The VC-dimension; 7. Non-uniform learnability; 8. The runtime of learning; Part II. From Theory to Algorithms: 9. Linear predictors; 10. Boosting; 11. Model selection and validation; 12. Convex learning problems; 13. Regularization and stability; 14. Stochastic gradient descent; 15. Support vector machines; 16. Kernel methods; 17. Multiclass, ranking, and complex prediction problems; 18. Decision trees; 19. Nearest neighbor; 20. Neural networks; Part III. Additional Learning Models: 21. Online learning; 22. Clustering; 23. Dimensionality reduction; 24. Generative models; 25. Feature selection and generation; Part IV. Advanced Theory: 26. Rademacher complexities; 27. Covering numbers; 28. Proof of the fundamental theorem of learning theory; 29. Multiclass learnability; 30. Compression bounds; 31. PAC-Bayes; Appendix A. Technical lemmas; Appendix B. Measure concentration; Appendix C. Linear algebra. | ||
| 650 |
_aMachine learning. _920567 |
||
| 650 |
_aAlgorithms. _923100 |
||
| 650 |
_aCOMPUTERS / Computer Vision & Pattern Recognition. _923471 |
||
| 700 |
_aBen-David, Shai _923472 |
||
| 942 | _cBOOKS ECE | ||
| 999 |
_c31736 _d31736 |
||